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(C5) w m c n is negligible when compared with the corre­
sponding quantity for the graph of Fig. 6(b). 
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Using the example of the degenerate electron gas, it is shown how the operator equations of motion for a 
many-particle system may be exploited to generate systematically a sequence of nonperturbative approxi­
mations of which some version of the random-phase approximation is the first. Some questions left unsettled 
by previous attempts in this direction are resolved by close attention to the structure of the spectrum of the 
system. The solution of the equations is carried only so far as to make contact with previously substantiated 
results. Finally, a rigorous proof is given that the plasmon frequency approaches the classical plasmon fre­
quency in the long-wavelength limit. 

I. INTRODUCTION 

THERE have been several attempts recently to go 
beyond the extreme high-density limit in the 

treatment of the problem of the degenerate electron 
gas in a uniform background of positive charge.1 Using 
the diagram techniques developed for the electron gas 
by Hubbard2 and DuBois,3 Osaka4 has shown how to 
sum an infinite but well-defined class of higher order 
diagrams not previously included in the calculation of 
the polarization propagator2,3 or effective interaction 
and has applied the results to obtain corrected values 
of the screening constant, plasmon dispersion relation, 
and low-temperature specific heat. We shall not be 
concerned here with this kind of technique, though as 
we shall show in a sequel to this paper, Osaka's theory 
coincides with an accurate solution of a suitably defined 
extended random-phase approximation (RPA). 

* Supported in part by the U. S. Atomic Energy Commission. 
t Alfred P. Sloan Foundation Fellow. 
1 For a general discussion, earlier references, and a summary of 

most of the known results, see D. Pines, The Many Body Problem 
(W. A. Benjamin, Inc., New York, 1961). 

2 J. Hubbard, Proc. Roy. Soc. (London) A243, 336 (1957). 
3 D. F. DuBois, Ann. Phys. (N. Y.) 7, 174 (1959); 8, 24 (1959). 
4 Y. Osaka, J. Phys. Soc. Japan 17, 547 (1962). 

It is, in fact, well known that the results based on 
the lowest order polarization propagator are completely 
equivalent to those which can be obtained from the 
equation of motion method in the RPA without ex­
change. It is also well known that the next approxi­
mation in the diagram method is equivalent to the 
partial inclusion of the exchange interaction and ex­
change self-energy effects in the equations of motion 
i.e., in the use of an extended RPA method as the basis 
for the theory.5 In consequence, several authors have 
felt that the equation-of-motion method warranted 
deeper investigation as the foundation for a non­
perturbative approach to the many-body problem. 
Here we mention first the work of Suhl and Werthamer,6 

whose technique has been applied to nuclear physics 
by Sawicki.7 Their method is based on the extended 

5 We shall, thus, distinguish between the simple and extended 
RPA, respectively, where the latter includes exchange and 
exchange self-energy corrections. 

6 H. Suhl and N. R. Werthamer, Phys. Rev. 122, 359 (1961); 
N. R. Werthamer and H. Suhl, ibid. 125, 1402 (1962). Reference 
should also be made to the work of K. Sawada, ibid. 119, 2090 
(1960). 

7 J. Sawicki, Phys. Rev. 126, 2231 (1962); G. Fano and J. 
Sawicki, Nuovo Cimento 25, 586 (1962). 
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RPA as first approximation. On the other hand, von 
Roos8 has developed and applied a technique based on 
the simple RPA as the leading approximation, as 
appears particularly useful for the electron gas. 

I t is the view of the authors, however, that the 
physical and mathematical basis of such methods 
requires further clarification which we shall attempt to 
supply in this note. Though the reasoning will be 
carried out in detail for the electron gas problem, it 
will be evident that it applies with suitable modifi­
cations to any many-body system. I t will be equally 
manifest, however, that the way in which the required 
modifications are to be made cannot be given once for 
all, but must be determined by the physics of each 
problem. I t is for this reason that we work from the 
beginning with matrix elements of operators between 
different states of the system and that approximate 
evaluations of these matrix elements are always re­
ferred to supposed properties of the states. 

What follows contains many points of contact with 
the work of Suhl and Werthamer6 and of von Roos8 

as well as their predecessors. We shall confine our 
attention to a single problem, the description of the 
plasmon, though the initiated9 will recognize that 
suitably supplemented, one finds here a complete 
method for treating the properties of the electron gas. 
The basic idea is the often used one that the states of 
the interacting electron gas can be put into a certain 
correspondence with those of the uncoupled system in 
a sense which we now describe. 

Let #(k,s), a+(k,s) be destruction, creation 
operators for particles of momentum k, spin s, 
with ^4(k,q) = &+(k+q, s)a(k,s). We establish a hier­
archy of states of the iV-particle system. We focus 
most of our attention on the so-called one pair states 
| l,q) with the supposed property that the matrix 
element (l,q|^4(k,q)|0) far exceeds in value10 any 
matrix element obtained either by replacing (l ,q | by 
any other state of momentum q or by replacing the 
ground state 10) by any other state of momentum zero. 
The state | l,q) is, thus, approximately a superposition 
of one pair configurations with respect to the ground 
state and is the more so the weaker the coupling. Our 
main object, though, will be to learn to generate 
systematically the corrections to this description. 

The next most complicated type of state is the two 
pair state 12,q) where it is essential to distinguish two 

8 O. von Roos, Phys. Rev. 128, 911 (1962). The method of this 
paper is closely related to that of Sec. I l l of this paper. The 
results of von Roos must, however, be considered questionable 
since they contradict the theorem of Sec. IV. 

9 Thus, the function whose vanishing determines the plasmon 
dispersion relation is effectively the dielectric function which 
also determines the ground-state properties of the system, as 
shown in reference 1. The determination of single-particle proper­
ties requires additional considerations which are mentioned in the 
text, but not carried out in detail. 

10 By a factor of order O at least, where Q is the volume of the 
system. 

species, namely, those of the form11 

| 2 , q ^ | l , q i > X | l , q - q i > (1) 

for some qi, which may be termed two pair incoherent 
states and which have the property11 

<2,qM(k, q - q i ) | l , q i ) ^ ( l , q - q i | ^ ( k i , q - q i ) | 0 ) (2) 

and those coherent states in which the decomposition 
(1) is impossible with the consequence10 

<2,qM(k,q ') | l , q-q')<<<l,q 'U(k,q') |0>. (3) 

I t is a consequence of the inequality (3) and similar 
inequalities that in studying the equation of motion 
for the matrix element (l ,q | ,4(k,q) |0) by the means 
to be developed in the succeeding sections, we need 
never consider any matrix elements involving two or 
more pair coherent states. This is fortunate since the 
properties and/or existence of such states has received 
scant attention. The methods of this paper could, 
however, be applied (separately) to this problem. 

By continuation of the above arguments, we can 
classify all the states of the system and decide which 
are the relevant matrix elements of the operators 
^4(k,q) between these states. These arguments will 
enter because the equation of motion for (l,q|^4(k,q|0) 
will bring in such products as 

(l^MCMxMCk^q-qOlO) 

= E<l,qM(ki,qi)l«XaM(k2,q-qi)|0>. (4) 
a 

A given stage of approximation consists in choosing a 
suitable subset of states \a) and of obtaining subse­
quently equations of motion for the new amplitudes 
thus included.12 A closed set of equations is finally 
generated. 

Further details are best relegated to the text since 
as we show successively in Sees. I I and I I I , alternate 
modes of development are still possible. Thus, in Sec. 
I I we develop a method, allied to that of Suhl and 
Werthamer,6 though distinct from it in detail, in which 
the first stage of approximation is the extended RPA. 
In practice, this method is most useful for the case of a 
short-range interaction where exchange interactions 
are of equal importance with direct ones. In Sec. I l l , 
an alternative method is developed, allied to that of 
von Roos8 in which the initial stage of approximation 
is the simple RPA. 

Aside from achieving the realization that wre have in 
each instance a systematic approach to the problem at 
hand, we only carry the calculations far enough to 
obtain the first exchange corrections13 to the plasmon 

11 The approximate equality becomes exact asymptotically (as 

12 This simple idea has also been used by von Roos, reference 8. 
13 For the most recent summary of this question with references, 

see O. von Roos and J. S. Smuidzinas, Phys. Rev. 121, 941 (1961). 
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dispersion relations. A more ambitious attempt to 
solve these equations is under way. 

I t is generally believed that the classical plasma 
frequency constitutes the exact long-wavelength limit 
for the eigenfrequencies of density fluctuations of the 
system. To our knowledge, however, a rigorous proof 
of this fact is lacking. A simple proof is provided in 
Sec. IV, and it is seen to hold also for the charged 
boson gas14 as well as for systems with either statistics 
which have additional short-range interactions of either 
sign. 

II. THEORY BASED ON THE EXTENDED RPA 
AS FIRST APPROXIMATION 

We work with the usual Hamiltonian 

H=Z e(k)a*(ks)a(ks) 
ks 

+ 1 E ^ ) £ 0f(ki+q,*i) 
q kisik2S2 

Xa?(k2—q, S2)a(k2s2)a(k1s1), (5) 

47T62 

V(q) = , < ^ 0 , 7(0) = 0, (6) 
q2£l 

e(k) = m2/2rn. (7) 

We suppress spin indices, understanding that with the 
momentum k* or k^+Q, where Q is arbitrary, there 
always occurs the spin variable Si and that summation 
over k{ includes also the spin summation. We, further­
more, introduce the notation 

e(a,b,c- ;x,y,z- -) = e(a)+e(b)+e(c)-{ 
-e(x)-e(y)-e(z)----. (8) 

Finally, when convenient we employ the variables 

4(k,q) = a t (k+q)a(k) , 
(9) 

p(q) = E 4 ( k , q ) , 
k 

which create a state of momentum q or destroy a state 
of momentum — q. 

By commuting A(k,q) with H, we obtain the fol­
lowing equation of motion for the energy difference 

[co(q) -6 (k+q;k) ] ( l ,qM(k ,q ) |0 ) 

= £ F ( q i ) E < M | { a t ( k + q - q i M ( k i , q i ) 
qi ki 

X a ( k ) - a t ( k + q M ( k i q i ) a ( k + q i ) } |0>. (10) 

In evaluating the right-hand side of (10), leaving out 
single contributions to any sum over momenta is, in 
general, permissible giving an error which vanishes as 

14 L. L. Foldy, Phys. Rev. 124, 649 (1961). 

0—>oo unless the term omitted happens to be larger 
than the average by a factor of order 12. Such terms 
exist and are easy to find. They are for the first and 
second terms, respectively, on the right-hand side of 
(10) 

(a) qi = q and qi = q; 

(b) ki = k—qi and ki = k + q ; 

(c) ki = k+q—qi and k i = k . 

Terms of type (a) contribute, for example, after a 
permissible commutation, 

F (q ) ( l qM(k ,0 )p (q ) -^ (k+q ,0 )p (q ) | 0 ) 

^ F ( q ) [ « ( k ) - W ( k + q ) ] < l q | p ( q ) | 0 ) , (11) 
where 

» (k )^ ( l ,q |4 (k ,0 ) | l , q> = <l,q|at(k)a(k)|l,q> 

9*<0|at(k)a(k)|0>. (12) 

Though we have here indicated approximate equality 
in (11) and (12), it is essential to realize that (11) and 
(12) should be asymptotically exact, the difference 
vanishing as some inverse power of ft. This follows, for 
example, by evaluating 

(l,qU4(k,0)p(q)|0) = ( l ,qM(k,0) | l ,q)( l ,q!p(q) |0) 

+E«<l,qM(k,0)|«^l,qX«^l,q|p(q)|0>. (13) 

Now n(k)^l and as can be easily shown 
(lq|p(<l)|0)~O1/2. On the other hand, the order of 
magnitude of the remaining sum is, by the type of 
analysis indicated in the introduction, at most of order 
unity.15 The term (11) is the direct-interaction term. 

Similar arguments can be made for the remaining 
terms (b) and (c). For (b) we obtain 

- Z F(q1)[»(k)-»(k+q)]<l,qM(k+q1>q)|0>, (14) 
qi 

the exchange-interaction term, whereas (c) becomes 

+ L F(q1)CW(k+q1)-W(k+q+q1)] 

X<l,qM(k,q)|0> (15) 

and is identified as the exchange self-energy term. 
Equation (10) may now be rewritten 

[ > ( q ) - e ( k + q ; k ) ] < l , q M ( k , q ) | 0 > 

= (11)+ (14)+ ( 1 5 ) + Z 7(qi)<l,q| {A(k, q - q O 
qi 

- ^ ( k + q 1 , q - q 1 ) } p ( q 1 ) | 0 ) (16) 

where it is understood that in the last term we are to 
omit the contributions from those momentum values 
corresponding to conditions (a), (b), and (c) and indeed 
this has been used in rearranging the operators so as to 

15 The sum is of order Q, the first factor of order fir1, the second 
at most of order unity. 
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obtain the form given.16 We now turn our attention to 
the problem of evaluating the contribution of the last, 
nonlinear term in (16). 

To carry out this program, we introduce a sum over 
states as in Eq. (4). For example, we write (q i^q) 

( l ) q | ^ ( k , q - q 1 ) p ( q 1 ) | 0 ) 

= £<l,qU(k,q-qi)|l ,qiXMu|p(qO|0> 
+E<l,q| A(k, q-qi)12,q1)<(2,q1)|p(qi)10) 
+contributions from 3 or more pair 

intermediate states. (17) 

For purposes of illustration we shall omit the contri­
butions from three or more pair states. Furthermore, 
making use of Eq. (2) we can simplify the second term 
since the only contributions that matter are those for 
which 

12,qiH 1 l,q)X 11, q i - q ) ^ 11, q; 1, q i -q) . (18) 

[co(q)-co(q1)-e(k+q-qi;k)]( l ,q |^(k,q-qi) | l ,qi) 

In order to understand the structure of these equa­
tions we must again examine the structure of the 
nonlinear terms. From Eq. (20), for instance, we must 
evaluate 

£ ' F(q2)(l,qM(k, q-qi-q s)p(q.)l l.qi) 

q2 

= F(q1)(l,qM(k)q)|0)<0|p(-q1)|l,q1) 

+ F(q)(OM(k1 ,-q1) |l ,q1Xl,q|p(q)|0)+.-.. (22) 
Here the second term in (22) is the already simplified 
contribution [from the two-pair incoherent state 
|2, q+q2) = 5(q2—q)|l, q; 1, qi). The terms shown are 

16 For a superfluid system, we would have additional large 
individual matrix elements besides (11), (14), and (15), for 
example, those of the pairing interaction in the case of super­
conductivity. 

Thus, we shall illustrate an approximation in which we 
write 

(l ,qU(k, q-q1)p(q1)|0)^(lqM(k, q - q i ) | l q i ) 

X(lqi |p(qi) |0)+(OM(k1q-q1) | l ,q1-q) 

X ( l , q ; l , q i - q | p ( q i ) | 0 ) . (19) 

This approximation is based on the idea that amplitudes 
like <l ,qU (k, q - q i ) | l,qi) and (1, q; l q i - q | ^ (k,qi) 10) 
are, next to (l,q|^4(k,q)|0) the most important ones 
characterizing the so-called one-pair states. They take 
cognizance for the first time that, in fact, such a state 
also contains two-pair configurations, but it is expected, 
or rather the treatment is valid, for the case that these 
do not dominate. 

For the new amplitudes that enter (19), we obtain 
by reasoning analogous to that which led to Eq. (16), 
the equations 

the only contributions quadratic in the large amplitudes 
like (lq|^4(k,q|0). We are ignoring terms quadratic in 
the correction amplitudes under consideration or in­
volving yet higher amplitudes. In this approximation, 
Eqs. (16), (20), and (21) yield a closed set of coupled 
integral equations involving amplitudes schematically 
of types (11A\0), (1 \A\ 1), and (2 \A\0) . 

A proviso must be added to the assertion that the 
equations are closed. This is the case if the number 
densities n(k) are assumed to be known. Within the 
framework of the time-independent equation of motion 
method espoused here, they can be obtained only by 
studying the equations of motion for the matrix 
elements of single operators a(k) or ^ ( k ) and by use 
of the formula 

»(k) = E<0 |a t (k) | a>(a |a (k) |0 ) . (23) 

= F ( q - q i ) [ ^ ( k ) - # ( k + q - q i ) ] < l , q | p ( q - q i ) | l , q i ) 

- L VXq2)[»(k)-»(k+q--qi)] <l,qM(k+q2; q -q i ) | l,qi> 
q2 

+ Z F(q2)C«(k+q2)-w(k+q-q1+q2)] <l,qU(k, q -q x ) | l,qi) 
q2 

+ £ ' F(q2)(lq|[4(k, q - q i - q 2 - ^ ( k + q 2 , q - q i - q . » ( q 0 1 l,qi>, (20) 
IS 

and 

C«(q)+«(qi-q)-e(ki+q1 ;ki)]<l ,q; l ,qi-qM(ki ,qO|0> 

= v(qi)[»(ki)-»(ki+qi)] <i, q; i, qi-q|p(qi)|o> 

- E F(q,)[»(ki)-»(ki+qO] (1, q; 1, q i -qM(ki+q 2 , qi)|0> 
Q2 

+ L F(q 2 )b(k 1+q 2 ) -n(ki+qi+q 2 ) ] <1, q; 1, qi-qM(k1 ,q1)|0) 
q2 

+ £ ' F(q2)(l,q; l ,qi-q|D4(k1 ; qi-qJ-AQn+qt, qi-q2)]p(q2)|0). (21) 
q2 
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This aspect of the problem will not be considered in 
this paper, but it can be handled by methods analogous 
to those being discussed. 

For the remainder of this section, we indicate only 
the crudest possible treatment of our coupled equations. 
If we think of the large amplitudes (1\A |0) as given, 
then Eqs. (20) and (21) constitute inhomogeneous 
integral equations in which the small amplitudes are 
driven by the term quadratic in the large amplitudes. 
We retain for purposes of illustration only the inhomo­
geneous terms arising from the decomposition (22) and 
related equations, and insert the corresponding solutions 
of (20) and (21) into (16). The general form of the 
resulting equation is 

[ co (q ) -6 (k+q ;k ) ]< l ,qM(k ,q ) |0 ) 

= V(q)L(q,k)<l,q|p(q)|0> 

+EM(q,k,p)<lqM(k+p,q)|0>. (24) 
p 

We address some general remarks to this form before 
recording in detail its relevant pieces L and M. I t is 
not difficult to see, if one stares at the coupled Eqs. 
(16), (20), and (21) long enough, that any reasonable 
method of elimination of the higher amplitudes, and 
not only the simple approximation entertained here, 
will lead to an equation with the structure of (24). One 
may easily imagine that the same will hold for a larger 
set of equations embracing additional amplitudes. I t is 
to be supposed that the elimination is carried out so 
that Eq. (24) contains amplitudes of the form (11A \ 0) 

or (01A 11) only. On the other hand, as we shall see in 
detail shortly, the kernels L and M are, in general, 
nonlinear junctionals of these amplitudes. 

The only practical way we see of attacking the 
resulting nonlinear integral Eq. (24), at least initially, 
is by the following processes of linearization. We first 
write 

0 1 
(25) 

where the order n of a given term is determined by some 
reasonable criterion such as the power of V which 
occurs. There may, however, depending on the mode 
of elimination of higher amplitudes, i.e., whether all 
potentials are screened, single-particle energies re-
normalized, etc., be other nonpower dependence on V; 
and therefore, the best definition of order will only 
emerge from experience. Starting with [cf. Eqs. (11) 
and (16)] 

Lo(q,k) = tt(k)-»(k+q)£-0 -kF) 
-0( jk+q! - -kF\ (26) 

where we have replaced the momentum distribution 
functions by their appropriate free-gas values, we know 
from the work of Sawada17 and Brout18 that the re­
sulting simple RPA equation has a complete set of 
solutions consisting of the scattering states and (below 
the decay threshold), the plasmon. 

In the next approximation we add the terms L\ and 
M\ and consider the approximate iterated equation 

[ c o ( q ) - e ( k + q ; k ) ] < l q | 4 ( ^ 

X£o(q,k+p)}<lq|p(q)|0>. (27) 

ilfi(q,k,p)=-K(p)[»(k)-»(k+q)]+5(p) E F(q')[n(k+qO-»(k+q+qO] (28) 
Here 

are the exchange and exchange self-energy terms and Li(q,k) will be discussed below. As an example of the type of 
improved result obtainable from (27) we derive in the standard way the following improved dispersion relation 
for the plasmon 

l = V(q) L [co(q) -e (k+q; k ) ] - H ^ o ( q , k ) + i : M1(q,k,p)Co)(q)-6(k+q+p; k+p)]- 1Z 0(q, k + ^ + L ^ k ) } (29) 
k P 

I t is simple to show that the second term gives the well-known exchange correction to the plasmon dispersion 
relation. The role of the term Li(q,k) requires some explication to which we now turn. 

The term in question is the first one which arises from the second stage of approximation considered in Eqs. 
(20) and (21). From the latter we obtain, respectively, the contributions. 

i 1 (q ,k) = L 1 [ ( 2 0 ) ] + £ 1 [ ( 2 1 ) l (30) 
where 

ix[(20)]=E V(.q0 E {[«(q)-«(qi)-«(k+q-qi;k)J-'<0|[4(k, -ql)-A(k+q, -qODlMb) 
qi ki 

X ( l , q 1 M ( k 1 , q 1 ) | 0 ) - [ c o ( q ) - w ( q i ) - 6 ( k + q ; k + q 1 ) ] - 1 ( 0 | [ 4 ( k + q 1 , - q i ) - 4 ( k + q + q i - q i ) ! l , q i ) 

X(l ,q iM(k 1 ) q 1 ) |0)} , (31) 
" K. Sawada, Phys. Rev. 106, 372 (1957). 
18 R. Brout, Phys. Rev. 108, 515 (1957). 
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and 

£i [ (21)] = E F(qi) Z C«(q )+co(q i -q ) -€ (k i+q i ; k ^ O \ [A(k, q - q i ) - i l ( k + q i , q - q i ) ] | 1, q i -q> 

X a ^ i - q l E ^ C k ^ q x - ^ - ^ C ^ + q ^ i - q W I O ) . (32) 

According to the scheme outlined above (31) and (32) 
are to be evaluated by inserting for the matrix elements 
the solutions of the simple RPA for the plasmon and 
for the scattering states, summing over all possibilities. 
Here, however, (and this will be in contrast to the 
method of the next section) a caution must be observed. 
This we learn by studying a simple approximation to 
these equations obtained by trying the free-particle 
values of these matrix elements. Consider, for example, 

< 0 | ^ ( k , - q i ) | l , q ^ < l , q i | 4 ( k , q i ) | 0 > 

= <0|at(k-q1)a(k) | l ,q1> 

X(l ,q i |a t (k 1 +q 1 )a(k 1 ) |0) 

^ 5 ( k 1 - k + q 1 > ( k - q 1 ) [ l - ^ ( k ) ] . (33) 

This kind of evaluation, inserted in (31) and (32), 
would bring them to a form quite comparable to the 
exchange correction of (29) and there would be a 
contribution of the same order. 

Further reflection shows, however, that the contri­
bution (33) is to be excluded because it corresponds 
precisely to the conditions (b) and (c) which determine 
the extra terms included already in the extended RPA. 
If it is simultaneously realized that the terms like (33) 
would arise from the free-particle parts of the pair-
scattering states, we are led to the altered prescription 
that we are to insert in (31) the plasmon "wave func­
tion" and the nonfree parts of the pair-scattering wave 
functions. This leads in each case to an additional factor, 
at least, of V. We, thus, reach the conclusion that the 
contribution from Li(q,k) may safely be left for the 
next order. 

We leave further development of this method to a 
future publication. Despite the wealth of detail already 
given, there are several points which require elaboration 
in order to carry the method forward: (a) the addition 
of a systematic method for generating corrections to the 
distribution functions n(k); (b) a systematic method 
for generating corrections to the Sawada-Brout ampli­
tudes. Assuming that these matters can be disposed of 
satisfactorily, at least within the iterative framework 
espoused above (and they can), we have gone far 
enough to show that we have here what is in principle 
a complete, nonperturbative approach to the electron 
gas problem in terms initially of a set of coupled non­
linear integral equations. I t is true that the provisional 
method of solving these equations outlined above comes 
uncomfortably close to the perturbation method. Our 
aim here, however, was to make contact with previous 
results. I t remains to be seen how far one can escape 
from these limitations. For this purpose, the method of 
the next section may have some advantages. 

III. THEORY BASED ON THE SIMPLE RPA 
AS FIRST APPROXIMATION 

The method of the previous section should prove most 
useful, if at all so, for the case of a short range inter­
action where direct and exchange interactions tend to 
be of comparable magnitude. For the electron gas, 
where the direct interaction dominates, the method, 
though completely viable, as we have tried to indicate, 
is also somewhat clumsy, and an alternative method 
based more directly on the simple RPA may be superior 
in practice. As the basis for this method, we notice that 
Eq. (10) may, without approximation, be rewritten as 

[<o(q)-e(k+q; k ) ] <l ,q |4(k,q) |0>= £ <l,q| {A(k, q-q1)p(ql)-p(ql)A(k+q1, q - q x ) } |0> 
qi 

= 7 ( q ) [ » ( k ) - n ( k + q ) ] <l,q|p(q)|0>+ £ 7(q0<l,q| {^(k, q - q i ) p f a i ) - p ( q i M ( M - q i , q - q i ) } |0>, (34) 
qi-^q 

where we have thus chosen only to linearize the direct interaction term. We now treat the entire remainder by the 
method of spectral decomposition described after Eq. (16) of the previous section. In the same approximation as 
that corresponding to the inclusion of Eqs. (20) and (21), we here consider the equation 

[ « ( q ) - « ( q i ) - € ( k + q - q i ; ^ 

+ E ^ ( q 2 X l , q | { ^ ( k , q - q i - q 2 ) p ( q 2 ) - p ( q 2 M ( k + q 2 , q - q i - q 2 ) } | l q i ) (35) 
q2^q— qi 

and several similar equations which we do not record. When we treat these in a manner similar to Eq. (22) and 
substitute the result in Eq. (34), we obtain an equation of the form (24) with L(q,k) replaced by a new kernel 
L(q,k) and Jkf (q,k,p) replaced by ilf(q,k,p). We now write 

L=i:Ln, M=Y,Mn. (36) 
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In analogy with the work of the previous section we consider briefly the approximation in which we drop M 
and write 

L=l0+Li. (37) 

Here obviously LQ—LQ and for Li(q,k) we now find 

ii(q,k) = E V(q)T. {Cco(q)-W(q1)-e(k+q-q1;k)]-1(0|[4(k, -qi)-A(k+q, -q i ) ] | l ,q iXMul^(Mi |0> 
qi ki 

- [w(q)-co(q-qi) -e(ki+qi ;k 1 ) ] - 1<0|[4(k 1 ,q i -q)-^(k 1+q, q i - q ) ] | l , q-q!> 

X<l ,q-qiM(k+q 1 ,q-q 1 ) |0)+[co(q)+ w (q 1 -q)-e(k 1 ;k 1 -q 1 ) ] - 1 

X ( 0 | 4 ( k , q - q 1 ) | l , q 1 - q ) ( l , q 1 - q | [ ^ ( k i - q 1 , q i - q ) - 4 ( k i + q - q i , q i - q ) ] | 0 ) 

-[«(q)+«(-q1)-6(k+q>k+q1)]-1<0M(k1 ,q1) | l , - q i > 

X(l, -qi\LA(k+qi, -ql)-A(k+q+q1, - q i ) ] | 0 » . (38) 

If, for purposes of orientation, we make the type of approximation indicated in (33) we obtain as the contribution 
of (38) to the plasmon-dispersion relation 

£ [co(q)-e(k+q;k)]-iL1(q,k) = E V(&i) £ [ ^ ( k ) - ^ ( k + q ) ] b ( k + q i ) - W ( k + q + q i ) ] 
k qi k 

X C c o C ^ - e C k + q j k ^ - H C c o C ^ - ^ k + q j k ^ - C c o C ^ - e C k + q + q ^ k + q O ] - 1 } . (39) 

This is identical with the second term on the right-hand side of Eq. (27) and, therefore, with the first exchange 
correction. 

IV. LONG-WAVELENGTH LIMIT OF THE PLASMON ENERGY 

I t is generally believed that as q —> 0, co(q) must be given by the classical plasmon frequency 

co2 (q) = Wol2=±irne2/?n, (40) 

where n is the particle density. Moreover, the literature abounds with near proofs.1 We consider here what is 
essentially a simple and rigorous proof, based on Eq. (34), though we could equally well base it on Eq. (16). 

We first note that if we sum Eq. (34) with respect to k, we should and do obtain the equation of continuity 

«(q)<q|p(q)|0> = <q|q.j(q)|0) (41) 
where the current 

J (q) = £ (2w)~i(2k+q)il (k,q). (42) 
k 

This is so because, first 
E [ » ( k ) - » ( k + q ) ] = 0 , (43) 
k 

and second because we encounter, in the second term, the commutator 

[p(q-qi),p(qi)]=0. (44) 
We next derive from (34) the equation 

C»(k)-»(k+q)] 
< l , q | p ( q ) | 0 > = 7 ( q ) E — — — <l,q|p(q)]0>+ £ V(q{) £ [co(q)-e(k+q; k)]~i 

k D°(q)— e (K+q; iOJ «i^« kk i 

X(l,q|{^(k,q-q1)p(q1)-p(qiM(k+q1 ,q-q1)}|0>. (45) 

We look for a solution of this equation with the condition 
P r ° p e r t i e S l = lim 7(q) £ [» (k) -»(k+q)] 

g-H) k 

lim(lq|p(q)iO)^0, limco(q) = co0^0. (46) X[co(q)-e(k+q; k)]"1, (47) 
q-*0 5->0 

which indeed gives the solution (40).19 It , therefore, 
With the momentary supposition that the last term of 1QrTM. . , ,, , ~ , . /yJAyN,, ^ ,. . ., ,. 

JT i - i 19 This is true even though we find m (47) the exact distribution 
(45) vanishes as q—>0, we obtain the standard functions»(k) 
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remains to consider this last term. As q-+0 we may 
ignore e(k+q;k) relative to co(q) since the former 
vanishes linearly with q. What remains vanishes for 
arbitrary q in virtue of Eq. (44) £thus showing the 
connection with the equation of continuity (41)]. This 
completes the proof. 

We show below that the first nonvanishing contri­
bution of the last term of (45) behaves like g2. First, 
however, we address ourselves to the possible sources 
of doubt concerning this apparently trivial proof. 
There is, in fact, only one such source. We have assumed 
that the system is such that only for the particular 
value of qi=q do we get an abnormally large matrix 
element and a singular factor F(q) simultaneously. 
It is, therefore, supposed that for any qi=cq, with c a, 
constant not equal to unity for sufficiently small q, 
which would also give a singular factor of V(q) as 
q—»0, the matrix element multiplying this singular 
factor is 0(Q~X) compared to the first term of (45). The 
proof, moreover, is equally applicable to the case of a 
charged boson gas and to a gas with either statistics 
with additional local short-range interaction. 

We complete our considerations by noting explicitly 
that the leading nonvanishing contribution of the last 
term of (45) must go like q2, as must indeed follow from 
inversion symmetry. Here it is only necessary to show 
that the term linear in q which comes from expanding 
the denominator must vanish, since the other linear 
term from expansion of the matrix element has already 
been indicated to vanish. We must, therefore, show that 

0 = Z E 7(qO(k-q)Dl(k, -qi)p(qi) 
k qi 

-p(qi)4(k+qi, -qi)] 

= E I F(q,)(k-q)D4(k, -qi),p(qi)] 

-£F(qi)(qrq)p(-qi)p(qi), (48) 
qi 

where the substitution k —» k— qi has been used in the 
second term of the first form of (48). We have, further, 

EEnqOCk-^C^Oki-qOXqi)] 

k qi 

= E E 7(q0(k-q)[4(k-qx, 0)-4(k1;0)] 

= IEF(q i ) (qrq) i (k ) , (49) 
k qi 

which vanishes upon averaging over qi and — qi, as 
does also the last term of (48). 

V. SUMMARY AND CONCLUSIONS 

The purpose of this paper has been to indicate, by 
methods which are more widely applicable, but which 
have been carried out specifically for the electron gas, 
how the equation-of-motion method may be carried 
beyond the first RPA, be it the simple or the extended 
version, to give an, in principle, complete and non-
perturbative method for studying a many-body system. 
The reasoning is based primarily upon (a) definite 
assertions about the order of magnitude of various 
kinds of matrix elements relevant to various classes of 
states of the system, and (b) the use of a spectral 
decomposition of products of more than two operators 
which defines in conjunction with (a) the manner in 
which one proceeds to higher order. We have indicated 
briefly one way in which the new equations may be 
solved which will make use of the known solutions to 
the simple RPA case, and we have made brief contact 
with previous results. 

It remains to be seen, however, how far our methods 
can be pushed to obtain new results, and for this reason 
we have not undertaken any discussion of several 
elements of the method which will be of importance in 
this attempt, namely, the correction to the occupation 
numbers n(k) that must come in higher order and the 
systematic correction of the RPA wave functions. The 
former is the more fundamental question, and as indi­
cated in the text, will require the study of the equation 
of motion of single operators, a question not considered 
here, but amenable to the same methods. Though no 
single element of our method is really new, we believe 
we have achieved a new synthesis and helped clarify 
some basic questions left obscure in previous attempts 
of the same kind. 

It should be clear that the same type of reasoning 
can be applied to the method of Green functions and 
in some contexts especially at finite temperatures it 
may be preferable to apply this latter method. For the 
sake of initial exposition, we have chosen to avoid this 
possibility in order to minimize the number of indices 
at which the reader need stare. 

It should also be clear how the methods, especially 
that of Sec. II, can be extended to supernuid systems. 
One has merely to include in the lowest approximation 
the additional "abnormally large" correlations charac­
teristic of these cases. 

Finally, we have given a rigorous proof that the 
plasmon energy, in the long-wavelength limit, goes 
over into the classical plasmon energy. 


